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Background

Sleep stages and scoring
There is Wake, MT (Movement Time), Stage 1 (S1), Stage 2 (S2),
Stage 3 (S3), Stage 4 (S4), REM (Rapid Eye Movement), where
SWS (slow wave sleep) = S3 + S4 and NonREM = SWS + S2 (please
note,  event  though  S1  is  a  NonREM  stage  this  it  is  not
considered here as such for the use in the toolbox for the
lack of characteristic sleep events). This is an extention of
the sleep scoring suggested by Rechtschaffen and Kales 1968.
It is “compatible” with the AASM scoring rules when using N1 =
S1, N2 = S2, N3 = S3+S4, REM = REM and NonREM = N2+N3.

Sleep onset time refers to the onset of the first S1 epoch
after lights-off that is followed directly by only S1 and
NonREM (but not wake) epochs.

S2 onset, SWS onset and REM onset refer to the onset time of
the first respective epoch since sleep onset time.

Total sleep time (TST) is the time from sleep onset to first
wake epoch not followed by a sleep epoch (i. e. S1 or NonREM,
usually after lights-on markers, however lights-on markers are
not considered in SpiSOP).

Sleep stages can be scored with the software “Schlafaus” (by
Steffen Gais) or the SpiSOP browser, as they are needed as
input for SpiSOP. See Figure 1 for illustration of the above.



Figure  1:  Example  sleep  hypnogram  over  a  full  night
demonstrating how sleep scoring parameters like Sleep Onset
Latency are calculated and transformed into a sleep table
according to Rechtschaffen and Kales 1968. Note that this
example does not show small Wake periods after sleep onset,
typical for a real hypnogram.

 

Sleep spindles
Sleep spindles can be classified in two types, slow (~9-12 Hz)
and fast (~12-15 Hz) spindles, both occurring mostly during
NonREM sleep with a duration of 0.5 to 3 s (or 0.3 to 3 s, or
0.5 to 2 s, usually little bit less than 1 s on average) and
with a waxing and waning of the peak or trough amplitudes.
Maximal peaks and troughs can mark the center of a spindle
(usually the trough is preferable).

The exact frequency of each spindle type varies (greatly)
between  individuals,  (moderatley)  nights  and   (moderately)
sleep stages.

Therefore these individual frequencies have to be determined
in the frequency power spectra between 8 and 18 Hz as the
peaks in NonREM sleep stages (e.g. with function freqpeaks).
In adults slow spindles (< 12 Hz but above 9 Hz, usually not



higher  than  11.5  Hz  and  on  average  10.5  Hz)  show  higher
frequency power in frontal channels mostly during SWS and
temporally  often  coocurring  before  or  after  fast  spindles
(12-14 Hz and ~13.3 Hz on average), which show higher power in
parieto-central  channels  and  are  present  throughout  whole
NonREM with comparable density (although not directly visible
during SWS). Slow spindles are thus easier to find in frontal-
channesl over SWS epochs and fast spindles in S2 sleep or all
NonREM in centro-parietal channel (recommended procedure).

Some  researchers  also  define  slow  and  fast  spindles
differently, as the slow and fast components of fast spindles
(<13 Hz slow, and > 13 Hz as fast). This split of fast
spindles gives further complications and considerations since
this  eventually  splits  spindle  events  by  half  for  some
subjects more than for others.

Often no clear slow (or fast) peak of the spindle frequency in
the power spectra can be found in NonREM sleep stages and
imputation has to be performed on several data sets (e.g.
replace later by group mean frequency or take the one where
the power is at least not too low). See Figure 2.

One  might  consider  concentrating  on  the  respective  sleep
stages  and  channels  to  find  the  peak  frequencies  of  the
respective spindle type.

Spindle events should be temporally aligned to either their
maximal trough (minimum trough potential) or maximal peak.

Slow oscillations
Slow oscillations occur mostly during NonREM sleep. They can
be classified in high amplitude slow oscillations (0.5-1 Hz,
~0.8 Hz in humans) and lower amplitude delta waves (1- 4 Hz),
both of which show amplitudes of at least 75 µV in scalp EEG
sleep recordings. In adults they mostly originate from frontal
areas and seem to “travel” to centro-parietal areas.

https://en.wikipedia.org/wiki/Imputation_(statistics)


The core frequency of these slow oscillations refers to the
duration of down and up peak. On average a relatively fast and
steep down peak is precedes by a longer and lower amplitude up
peak. This irregularity therefore needs a prefiltering of the
data that allows the frequency component of the down peak
still to be included (e. g. prefiltering for 0.5–1 Hz slow
oscillations is therefore low pass filter around 3.5 Hz).

One should use the negative half-waves lowest down-peak in the
potential for the temporal identification of slow oscillations
time-points because they typically show more discrete peaks in
the EEG compared to positive half-waves, which have a broader
and more variable shape (but can also be used depending on the
question to be answered).

 

Power-spectral-density  and  Power
Spectrum band estimates
For analysis of the power spectral density (PSD) or the power
spectrum  (PS)  in  specific  frequency  band,  several  steps
are performed:

Segmentation:  The  epoched  data  is  further  cut  into  time
segments (aka. windows) of a specific length (e.g. 5 s) that
either overlap (0.9 overlap) or do not (0 overlap). Depending
on the segment length and overlap, some data is lost due to
this segmentation. At most this is:

loss  =  (segment  length  *  (1  –  overlap))  *  (number  of
consecutive  epochs  of  sleep  stages  of  interest)

e.g. if you have 10 NonREM consecutive data parts due to
epoching, 5 s segments and 0.9 overlap, then the segments will
not cover at most (5 s * (1 – 0.9)) * 10 = 5 s. Note that this
“maximal lost coverage” is at the end of those consecutive
data parts, each of maximal length (segment length * (1 –



overlap)). The segment length should not exceed the epoch
length (humans usually 30 s and rodents 10 s or 4 s). This
means for usual human scorings the maximal segment length
should be chosen to be 30. (A future release will also be able
to  handle  less  loss  and  thus  smaller  segments,  due  to
adaptation  of  the  window  function,  see  further  below)

 

Figure 2: Example of three power spectra from NonREM Sleep EEG
data (e.g. around Cz). Not in all individuals there are two
clear power peaks (left power spectrum) and often the slow
spindle power peak (left power spectrum) is missing (center
power spectrum) or hidden (left power spectrum) .

 

Accuracy/spectral  resolution  sonsiderations:  The  maximal
frequency resolution that can be used is f_res = 1/(segment
length in seconds) = f_s/N, where f_s is the sample frequency
of your data (e.g. 500 Hz) and N is the segment size/length in
samples.  Always  compute  f_res  before  you  even  think  to
start power spectrum estimation.! For example for 5 s segments
the frequency resolution is 1/(5 s) = 0.2 Hz thus the spectrum
will result in those frequency bins/steps by 0.2, 0.4, 0.6, …

Hint: You do not have to consider if the segement length is of
specific sample length satifying the power of 2 law for very
fast  fourier  transform  (e.g.  128,  256,  512  …  samples).
The fast fourier transform performed here is also very fast
for any length of samples, and as accurate too, so you have
the power to choose.

Calculation: The Power Spectrum is estimated by calculating a



transformation  of  the  signal  in  each  segment  using  fast
fourier transformation (FFT), but only after the segments have
been “tapered”. In the simple case this tapering involves
using a single taper (here a single Hanning taper is used),
i.e.  limiting  the  signal  of  each  segment  by  a  so  called
“window function” (Figure 3.1 and Figure 3.2). For example,
lets take the Hanning window function, that attenuates the
signal at the beginning and end of segments. Note that for the
Hanning window an overlap of 0.5 is sufficient, however if you
want  to  avoid  mentioned  data  loss  due  to  segmentation
procedure and still keep a sufficient frequency resolution
using large Segments (f_res) you need to use a higher overlap
of 0.9. Overlap values between 0 to 0.5 and 0.5 to 0.9 should
not be chosen. High segment overlap can also lead to redundant
calculation of the same signal, and of cause an increase in
computation time.

The purpose to use such a spectral window function and limit
the signal for each segment is to reduce “leakage” aberrations
in the following FFT output. Such leakage appears because
sudden changes in the data at the start and end of each
segments.  Therefore  the  window  reduces  the  amplitude  (and
therefore the power) of the signal in the segment especially
at the ends. The trade-off for this tapering method is that
the frequency resolution is also reduced, and is attributed to
a simple lack of data points for each FFT calculation. NEW,
the window function can also be modified by adjusting the
proportion of the hanning window (only works with hanning
window) that is applied. e.g. 1 means 100% of hanning window
applied and 0.5 means 50% of hanning window with symmetrically
25% of each segment tail (left and right) given a hanning
shape (Figure 3.1)





 

Figure 3.1: Example of how a window function (here a Hanning
window in blue) is adjusted by a proportion (in %) and how
this influences the shape, 100% is the usual standard hanning
window. 50 % is stable and uses more of the tails. 0% is
square  shaped  and  does  interfere  with  the  following  FFT
calculation.

Therefore spectral windowing of each segment improves accuracy
of the power spectrum estimation, however the contribution to
this  estimate  of  the  signal  would  be  reduced  near  the
beginning and end of the segments. This is why we overlapped
the segments in the first place. This overlapping compensates
– at least to some degree – for the lower contributions at the
boundaries  of  the  hanning-tapered  segments.  The  resulting
power estimates for each overlapped segment is then averaged
across all segments (Welch’s overlapped segmented average).
See Figure 4. Averaging therefore reflects the average power
spectrum of the whole data of interest (or all data parts),
i.e. one frequency relative to the other frequency in all the
data. However one can also get another arbitrary estimate
reflecting an absolute measure of power of a frequency by
adding (instead of averaging) across all power spectra. This
“summed” power reflects therefore a quantitative measure of
total power observed across the data of interest. For example
if you are more interested in frequency increases relative to
the other frequencies within one data set use the averaged
values.  If  you  are  rather  interested  in  the  “amount”  of
frequency power observed in each dataset, then use the summed
power spectra. Consider that both, summed and averaged, power
spectra  values  can  also  be  normalized  by  dividing  and
multiplying by the length of the data of interest (data region
of interest, aka. data ROI), respectively.

Average over Bands: Well if we now have the power spectra as
we want it (averaged or summed), we can “cut out” the values
of some interesting frequency bands (with a specific cutting



accuracy that should not to be conflicted with f_res). See
lower part of Figure 4. For example we want to cut from 4 Hz
to 8 Hz. Consider that frequency resolution is for example
f_res = 0.2 Hz). This results in ((8-4)/f_res) + 1 =  (4/0.2)
+ 1= 21 power values. Those 21 power values reflect then the
theta band and are averaged to one value, that then is a
representative for this theta band. This can be done for all
other frequency bands within a minimum frequency of f_res and
a maximum frequency of half the sample frequency i.e. f_s/2
(aka. the Nyquist frequency), e.g. if the sample frequency f_s
is 500 and segment length is 5 s then the minimum frequency is
0.2 Hz and maximum is 500/2 = 250 Hz.

Common  used  frequency  bands  of  sleep  EEG  (often  exact
frequencies vary between labs, studies and species, here for
humans):

slow oscillation (SO) 0.5 – 1 Hz

delta waves 1 – 4 Hz

slow wave activity (SWA) 0.5 – 4 Hz

theta 4–8 Hz

(alpha 8-12 Hz, overlapping and confounding for the “slow
spindle band”)

slow spindle 9–12 Hz

fast spindle 12–15 Hz (also called sigma)

beta 16–30 Hz

slow gamma 30–45 Hz 

fast gamma 60–90 Hz

 

NOTE: Please consider not to rely on signals from the 50 Hz



(e.g. Europe) or 60 Hz range (e.g. US), since this reflects
the  power  line  hum  prevalent  in  most  recordings  (if  no
specifically taken care of at recording). SpiSOP by default
filters 50 Hz and multiples (100 Hz, 150 Hz) (and can be
changed in the Core parameters to 60 Hz) noise out, however
this is never perfect!

 



Figure 3.2: Example of how a window function (here a Hanning
window in blue) is applied (sample-wise multiplication) to
signal (green) of a segment of data resulting in an signal
that  is  attenuated  at  the  borders  (purple).  After



“windowing”(or  ”tapering”)  of  the  windowed  signal  a  Fast
Fourier Transform (FFT) can be applied to estimate the power
spectrum (red) of this particular segment.

 

Figure 4: Example of Segmentation method (Welch’s Method) for
Power spectrum estimation of several parts of data. Data is
segmented in segments (green) of a fixed length, and a window
function (blue) is applied to the signal of those segments to
prevent “spectral leakage” for the then applied fast Fourier
transformation (FFT) that estimates the power spectrum (red)
of each segment. Segments overlap to compensate for the loss
of power at the boundaries of each segment – which is a result
of windowing – and also to reduce lost data (grey) at the end
of consecutive data parts. Power spectrums across segments of
all data parts are then averaged (or summed to give a energy
measure) to give a power spectrum estimate representing the
whole data. The specific frequency bands are cut from the
power spectrum and then averaged within those bands (purple)
to give power estimates representative for those bands.



Note that calculating the power spectra for lower frequencies
takes more computation time (“the lower, the longer”).

Power Density: However, for now the calculation only resulted
in power estimates for each frequency, i.e. a power spectrum
(PS) estimate. How do we get an equivalent power density (PD)
estimate  for  each  respective  frequency,  i.e.  the  Power-
spectral-density (PSD) estimates? And what is the difference
between  power  and  power  density?  Simply  speaking,  the
difference is that PSD does not depend on the parameters you
used for the FFT on the segment signals, i.e. varying segment
size and the applied window function. Therefore we need to
normalize  the  power  estimates  to  obtain  power  density
estimates. We do this using the Effective Noise BandWidth
(ENBW)  calculated  by  a  window  function  specific  constant
Normalized  Equivalent  Noise  BandWidth  (NENBW)  and  the
frequency resolution f_res (aka. frequency bin size for the
FFT).  Let’s  assume  we  used  EEG  and  our  measured  signal
potential is Volts [V]. Since we normalize the power (for the
whole spectrum) [V²] by a frequency (i.e. a band width), the
power density (for each value in the spectrum) unit is now
[V²/Hz]. For further details, e.g. how to calculate NENBW from
any discrete window function and sample frequency and also why
the following calculations are valid see Heinzel et al. 2002
(pdf can be found in the literature folder (if supplied) or
online GH_FFT.pdf a good introduction from G. Heinzel , A.
Rudiger and R. Schilling).

The  calculation  is  relatively  simple  once  the  already
mentioned  values  are  known:

PSD = PS / ENBW

or power density = power / ENBW

, where

ENBW = NENBW * f_res = NENBW * f_s / N = NENBW / (segment
length)

https://holometer.fnal.gov/GH_FFT.pdf


, and where f_s is the sampling frequency

, and f_res the width of one frequency bin (e.g. 0.2 Hz)

, and N is the segment size/length in samples N = (segment
length) *f_s.

NENBW remains constant for single taper windows.

For the Hanning window we have  NENBW = 1.5 bins.

(For the Hamming window we have NENBW = 1.3628 bins.)

Note that PSD estimates for multi-taper methods (usefull for
shorter  data  segments  not  typical  for  sleep  EEG)  is  not
supported by SpiSOP yet, but maybe in a future release.

On the output:

Name Relation
Unit (with Volt as

Potential)

Power spectral density
(PSD)

PSD = PS /
ENBW

V²/ Hz

Power spectrum (PS)
PS = PSD *

ENBW
V²

Linear (/amplitude)
spectral density (LSD) or
“Energy spectral density”

LSD =
sqrt(PSD)

V

Linear (/amplitude)
spectrum (LS) or
“Energy spectrum”

LS = sqrt(PS) V/sqrt(Hz)

 

Consider also other potentials than Volts [V] for EEG and MEG
and  their  cardinalities,  e.g.   [µV],  [mV]  and  Tesla  [T]
[fT/cm²].

 



Note, the Nyquist-Shannon sampling theorem still should hold
(http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling
_theorem), i.e. the sampling frequency of the data f_s must be
higher than the maximal frequency of interest. For example if
your sampling frequency is 200 Hz then the maximal frequency
you can include use is therefore < 100 Hz, i.e. for example
100 Hz minus f_res (e.g. 99.8 Hz). However in practice, use
less than approximate 90 Hz since 90 * 2.2 < 200 Hz, SpiSOP
requires a three times higher sampling frequency thant the to
be inspected frequency (so up to 66.6 Hz inspected frequency
for a 200 Hz signal frequency)

 

Methods  and  Algorithms
implemented in SpiSOP

Important general remarks
Filtering or prefiltering is always performed on the original
sample frequency before putative down sampling of the data for
further analysis.

Data is used only from the given sleep stages of interest
excluding  epochs  manually  scored  as  movement  arousals  or
artifacts.

This results in consecutive data blocks of interest with a
minimum length of one epoch length (e.g. 30 s).

Only  dataset  specific  channels  of  interest  are  used  for
analysis. Channels can be averaged before analysis as one
virtual channel.

For  each  event  also  the  sleep  stages  –  according  three
“scoring levels” –  is given.

http://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem
http://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem


For each run of an analysis function a smaller subsets of
datasets can be chosen.

The first scored epoch in the hypnogram (scoring files) is
assumed to contain the first sample of the dataset. Scoring of
Analysis relevant sleep stages should not be longer than the
actual data, in this case a warning is given that the further
scored part is not incorporated in the analysis.

If set parameters do not match the data (for example sample
frequency) then errors are reported and suggest what to change
or adapt in order to re-run the analysis.

Always perform a prefiltering of your datasets when they were
recorded  without  filtering.  You  can  use  the  preprocout
function to do this, but every SpiSOP function conservatively
filters the data again, just to make sure it is fit for the
necessary analysis steps. Important one cannot get frequency
information beyond this (pre)filtering. Also if for example
the data has been already low-cut filtered for 0.159 Hz and
high pass filtered for 35 Hz, one can only look in this (band-
pass) range of 0.159–35 Hz. Filter settings could be obtained
from looking into the header files , e.g. fro brainvision
files note that a time constant of 3 s results in 1/(2*pi*3 s)
= 0.054 Hz low cut-off frequency, if time constant is 1 s then
this corresponds to approx. 0.159 Hz. Note that if data is
already  pre-filtered  (especially  for  low  frequencies)  no
further  pre-filtering  in  the  parameters  of  the  analysis
function might be set, i.e. set high pass filters to 0 Hz
which results in no high pass filtering at all (since data was
already filtered)!

 

Hypnogram values
Sleep values for creating a sleep table are created from the
hypnograms (files) obtained from sleep scoring and from a list



of lights-off periods (given in non-negative samples offset
from start of data) for each dataset. This includes the total
sleep time (TST) and the amount of each sleep stage or level
of sleep stage in percent (of TST) or absolute duration (in
minutes). Separately the same percentages and duration are
obtained  for  artifact  (no  movement  arousal)  epochs.
Additionally general sleep onset (after lights off), and onset
times of important sleep stages (after sleep onset) are given
too. Sleep onset is referenced to given Lights-off time-points
(in  samples  after  start  of  EEG  recording,  or  giving  an
additional offset) for each dataset separately (see FAQ on the
data format requried)

 

Filters
There are four filter types supported: (1) FIRdesigned (2)
IIRdesigned  (3)  fir  (4)  but  .Filter  (1)  and  (2)  are  the
default Finite Impulse Response (FIR) equiripple and infinite
Impulse  Response  (IIR)  Butterworth  filter,  respectively.
Filters (3) and (4) are the FIR (hamming window based) and IIR
(also  butterworth)  filters  used  by  the  fieldtrip  toolbox,
respectively. Filter parameters and designs for band pass,
high  pass  and  low  pass  filtering  can  be  changed,  default
values are two-pass filters (matlab zero-phase filtfilt two-
pass filter function), however also one-pass filters can be
chosen. Note that in case of two-pass of a filter that filter
attenuates  the  signal  twice  as  much  as  in  one-pass  and
therefore changes the given or reported cut-off frequencies
accordingly.  This  two-pass  double  attenuation  can  be
compensated automatically for FIRdesigned filters by dividing
attenuation  values  by  two.  All  high  pass  filters  are  by

default  IIR  Butterworth  filter  of  4th  order  with  cut-off
frequencies given in -3 dB (parameter: IIRdesigned as default
or but for fieldtrip version). Low and band pass filters are
FIR equiripple (default) or FIR Hamming window (parameter:

https://www.spisop.org/faq


IIRdesigned  for  equiripple  as  default  or  fir  for  hamming
window  based  from  fieldtrip)  filters  with  a  default
attenuation of 100 dB in the stop band and 0.001 dB in the
pass band. Transition width form pass to stop frequencies for
FIR equiripple filter can be modified but are at 1.25 Hz
transition  width  by  default.  Alternatively  for  Attenuation
values a fixed filter order can be specified. Note that is
case  of  the  fieldtrip  implemented  filters  the  frequencies
given are NOT pass frequencies but cut-off frequencies with -6
dB cutoff for FIR Hamming window (parameter: fir) and -3dB
cutoff  for  the  Butterworth  filter  (parameter:  but).  Clear
filter  properties  can  only  be  reported  for  parameters
FIRdesigned  AND  IIRdesigned,  otherwise  they  have  to  be
approximated using a filter designed outside the toolbox, in
this case (using fir or but) also the fixed filter orders
should be stated in the parameters for each filter type. In
case of fir the default filter order is 3*floor(f_sample /
min(f_cutoff)), e.g. for 100 Hz sampling rate of a band filter
between  10  and  15  Hz  is  3*floor(100/min(10,15)  =
3*floor(100/10)  =  3*10  =  30,  however  more  than  500  is
recommended to obtain accurate attenuation.The filter order
should  not  exceed  floor(f_sample  *  (epoch  length)).  All
functions implement an additional high pass filter that can be
applied previous to downsampling. Note if this pre-downsample
high pass filter is not turned off, it will filter also in the
case  that  no  downsampling  is  required  (for  compatibility
reasons with other datasets that might need downsampling). In
case  data  is  already  pre-filtered  (during  recording  for
example)  the  pre-filter  can  be  turned  off  (set  to  0  Hz
filter).

Before  downsampling  (and  after  pre-downsampling  high  pass
filtering) from frequency f_ori to f_down, a standard low pass
FIR (Kaiser window, beta = 5) filter is applied to reduce
aliasing effects (this filter is the standard resample filter
of  the  FieldTrip  toolbox  and  is  realiesed  with  the  firls
matlab function). Unlike the other filters this filter cannot



be modified in any parameters. If the ratio f_down/f_ori = p/q
then the filter order is N = 2*10*q, e.g. downsampling form
200  Hz (f_ori) to 100 Hz (f_down) results in a filter order
of N = 2*10*2 = 40, since 100/200 = 1/2 = p/q.

Figure  5:  Example  of  FIR  equiripple  band  pass  filter
characteristics. Magnitude of filtering depends on frequency
and filter order, defined by minimal attenuation in the stop
bands  (Astop1,  Astop2,  defined  by  Fstop1  and  Fstop2)  and
attenuation fluctuation in the pass band (Apass, within Fpass1
and Fpass2). The filter has a roll-off with transition to the
stop bands with a gap (Fgap1, Fgap2) and defined by the -3db
cut-off frequencies (Fcut1, Fcut2).

Power-spectral-density  and  Power
Spectrum band estimates
Power spectra are determined by calculating the Fast Fourier
Transformations (FFTs) to consecutive overlapping segments of
a specific length (e.g. 10 s) and a specific overlap (e.g.
0.5), whose signal is limited by a Hanning window (single
hanning-taper) resulting in a power spectum of the frequency
resolution of 1/(segment length) Hz. Similarly a multi-taper



DPSS (discrete prolate spheroidal sequence) or Slepian window
approach instead of the single hanning window can be used with
a specified smoothing frequency parameter (e.g. 0.1 Hz). The
resulting power spectra across all segments are then averaged
or  summed.  From  the  power  values  of  each  frequency  then
corresponding and power density values are calculated, i.e.
for the hanning-taper approach, normalizing the spectrum for
the segment size and the hanning-window applied. For further
details see the same subsection under the Background section.
For given frequency bands of interest the mean power (or power
density) values are calculated form the averaged or summed
power spectra (or power density spectra). Reported are the
power  and  power  density  estimates  for  each  band  in  each
channel of interest (band_channel file) and the full spectrum,
given in the maximal frequency resolution for each channel
(full_channel file). Files for each individual dataset are
then merged to a single file containing all entries of all
analyzed datasets. It is checked if pre-filtering or data
sample  frequency  or  down  sample  frequency  matches  the
requirements to obtain correct power spectra for the requested
frequency bands. Bands are listed in an input file that can be
adapted for band definitions. Full spectra are obtained from
the  range  of  minimal  to  the  maximal  frequency  across  all
listed bands.

 

Frequency  peaks  for  spindles  or
slow oscillation center frequencies
Computation of the power spectra is like methods in power
spectrum bands estimates, however only in one spectrum of
interest that is given by a minimum and maximum frequency.
Note that the frequency resolution of the spectra depend on
segment length f_res = 1/(segment length). Either detection of
one peak or two peaks with a specific distance (e.g. 1 Hz) in



the spectrum are (tried to be) automatically detected, however
have to be visually accepted or adapted after computation by
the experienced user. Visual confirmation and adaptation of
each spectra of a dataset is done in a pop up window after all
spectra are computed. Power spectral for visual inspection is
smoothed using locally weighted scatterplot smoothing (LOWESS)
with a 1 Hz frequency window.

 

Spindle detection
Spindle detection is based on (Mölle et al. 2002), but also
see (Ngo et al. 2013). The algorithms were further adapted to
get  more  properties  and  flexibility  and  include  other
approaches  for  finding  spindles  as  is  described  in  the
following.

For the detection, one has to determine the center frequencies
of  spindles  (either  fast  or  slow)  for  each  dataset  or
individual.

Then each EEG channel of interest in each dataset is band pass
filtered using a finite impulse response (FIR) filter. The
filter  band  is  defined  according  to  the  dataset  specific
center frequency plus minus a frequency bandwidth constant for
all datasets (band pass frequencies). The resulting frequency
band can be further limited by general minimal and maximal
frequencies  across  all  datasets.  For  example  previous
determination of fast spindles center frequency in one dataset
was 13.3 Hz, with a plus of 2 Hz and a minus of 1 Hz this
gives the filter band of 12.3 to 16.3 Hz that can be further
limited by minimal frequency of 12 Hz and a maximum frequency
of 16 Hz and results in a frequency band of 12.3 to 16.0 Hz.

Then the root mean square (RMS) of the signal in a specific
time  window  (e,g.  0.2  s)  is  determined  for  each  sample
resulting in a moving RMS signal. The moving RMS signal is



further smoothed by a moving average of another window length
(e.g. again 0.2 s). The samples of half this (maximal) window
sizes, or the samples corresponding to sample frequency per
minimal filter frequency (depending on what has more samples)
are ignored at the borders of consecutive data blocks (data
parts determined by hypnogram). The smoothed moving RMS signal
is then used to detect spindles. The beginning and end of a
putative spindle is marked, if the smoothed moving RMS exceeds
a specific threshold for the length of an event-limiting time
window that marks the minimum and maximum duration of the
spindle event (e.g. 0.5 to 3 s). See Figure 6.1.

The  threshold  is  expressed  as  a  factor  in  units  of  (a)
standard deviations (e.g. 1.5 SD) (b) mean of the positive
signal half (e.g. 4 means),

of the (1) filtered signal or (2) envelope of the filtered
signal,

either in the (x) respective channel, (y) the mean standard
deviation of all channels of interest or (z) the standard
deviation of all values across channels of interest. (,i.e.
2x2x3 = 12 parameter combinations)

Furthermore,  since  the  moving  RMS  does  not  represent  the
envelope well, also the option is given to use the absolute
values of the hilbert transfrom of the filtered signal, giving
a precise envelope.

Also the option of a second threshold is given the envelope
must surpass (at least once) in addition (criterion) to being
counted as spindle. This accounts more for the waxing and
wanning of the spindle, while better defining the beginning
and the end of it. An illustration of using hilbert envelope
and two thresholds is given in Figure 6.2.

For  the  putative  spindle  in  the  signal  the  following
properties  are  determined  from  the  filtered  signal:



Length (or duration) of spindle is the end minus the
beginning time-points, both determined by the (lower)
threshold crossings,
peaks and troughs (trough = down peak) are the positive
and  negative  extrema  in  the  filtered  potential,
respectively.  Within  troughs  or  within  peaks,
respectively,  at least a minimum duration of a half
wave of the max frequency of interest is reqired.
The count of peaks and the count of troughs is given by
the respective number of found extrema.
Maximum  peak  and  maximum  through  (minimum  potential,
that  is  negative  in  filtered  signal)  are  the  most
extreme values of all troughs or peaks, respectively.
Maximum  trough  to  peak  potential  is  the  absolute
potential  difference  between  the  maximum  through  and
peak of a putative spindle.
The average frequency of a spindle is determined by the
mean of peaks and throughs count divided by the length
of the spindle, i.e. (#peaks + #troughs)/(2 * length of
spindle).
Samples and/or time-points of the begins, ends, peaks,
troughs, maximum peaks, maximum troughs are reported.
Also the standard deviation within the filtered signal
of the spindle is given to exclude further outliers
after  detection  is  finished.  Reporting  also  includes
other options.

Putative  spindles  can  be  merged  before  determining  their
properties if their boundaries (begins and ends) are in a
proximity of a specified duration (e.g. 0.5 s). To assure
merging is NOT applied in a sequential manner (i.e. no bias
for merging of slow spindles that closely follow faster ones)
this is performed in a greedy strategy:

The putative spindles are ordered in an ascending manner with
respect to their boundaries difference. In one run, beginning
with the putative spindles with the least boundary difference,



two spindles are merged if they still confer with the limiting
time window. If two merged spindle were merged in one run,
then they are excluded from being merged again with other
putative spindles until all further boundary differences are
processed to be merged or not. This results in the first run,
where two putative spindles were merged first, if their time
difference of boundaries was also first, and second, if their
boundary difference was second etc. The new set of resulting
putative spindles is then ordered again and merged in the same
manner in further runs. This continues until in one run no
spindle can be merged again with any other spindle within the
limits of the time window.

The merging count of how many putative spindles contributed to
the final spindle set and to each resulting spindle are also
reported.

Spindles can be further excluded if they do not concur with a
maximum or minimum trough to peak potential, given in absolute
values of the potential (e.g. 200 µV).

The final spindles are ordered to their time of occurrence
also given a specific identification index within each channel
that reflects the temporal ordering.

Report  of  spindles  events  includes  each  event  and  its
properties  (event  file),  an  aggregation  by  channels  of
interest with key mean or summary values (channel file), and
also each of the troughs and peaks of each spindle (two files
with events, where each line corresponds to the respective
line in the event file). Files for each individual dataset are
then merged to a single file containing all entries of all
analyzed datasets.

 



Fig
ure 6.1: Example of (fast) spindle in the filtered signal
(12-15 Hz) and its definition by the detection method used.
Detection is based on a threshold (green) passing of the root
mean square of a moving window (red, magnification on the
right)  of  the  filtered  signal.  Threshold  can  be  absolute
Potential value, but usually is a multiple (e.g. 1.5) of the
standard deviation of the whole filtered signal (e.g. of a
respective  channel).  Not  that  the  red  signal  envelope
displayed here is depicted as a moving RMS, that usually does
not fit the spindle envelope as is depicted here and is lower
than  the  actual  amplitude.  For  simplicity  the  second
(criterion)  threshold  is  not  depicted,  see  Figue  6.2.

Figure 6.2: Example of (fast) spindle in the filtered signal
(12-15 Hz) and its definition by the detection method used.
Detection  is  based  on  two  thresholds  (green)  passing  the
hilbert envelope of the filtered signal. Thresholds can be
absolute Potential value, but usually are a multiples (e.g.
1.5  for  the  begin/end  threshold,  2.25  for  the  criterion
threshold) of the standard deviation (or the mean) of the



whole filtered signal (e.g. of a respective channel) (or the
envelope itslef).

 

Slow oscillation detection
Slow oscillation detection is based on (Mölle et al. 2002) but
also  see  (Ngo  et  al.  2013).  The  algorithms  were  further
adapted to get more properties and flexibility for finding
slow oscillations as is described in the following. Prior to
the actual detection, the signal is high pass filtered (IIR by
default) then low pass filtered (FIR) to contain frequency
components observed in slow oscillations in a specified band
e.g.  0.3  to  3.5  Hz.  This  pre-filter  assures  that  fast
potential changes and components within a slow oscillation
that are beyond the peak frequency are still considered even
if the actual frequency of the slow oscillations is lower than
required  (e.g.  0.8  Hz).  Then  all  the  time  intervals  with
consecutive  positive-to-negative  zero  crossings  are  marked.
Only intervals with durations corresponding to a minimum and
maximum slow oscillation frequency are considered as putative
slow oscillations. For example slow oscillations between 0.5
Hz and 1.25 Hz correspond to a time interval range of 0.8 to 2
s duration. These minimum and maximum frequencies are either
given to be constant for all datasets or – like in spindle
detection  –  can  be  given  in  dataset-specific  center
frequencies  plus  and  minus  a  specific  frequency  bandwidth
(however here further global limits like in spindle detection
across datasets cannot be applied). For the putative slow
oscillations the following properties are determined from the
filtered signal:

Duration/Length of a slow oscillation is the end minus
the beginning time-point determined by the positive-to-
negative  zero  (Down-zero-crossings).  The  samples  that
correspond to the “sample frequency per minimal slow



oscillation frequency” are ignored at the borders of
consecutive data blocks.
The  down-peak  (or  maximal  trough)  is  the  minimal
potential in the filtered signal,if before a negative to
positive zero crossing (Up-zero-crossing), and the up-
peak  (maximal  peak)  is  the  most  positive  potential
following thereafter, and if before the end of the time
interval. The up-peak and the down-peak potential are
determined as the difference to zero in the filtered
signal  and  are  respective  negative  and  positive
potentials.
The  estimated  slope  is  calculated  by  the  down-peak
potential (zero to down peak potential) over the time
lag  to  the  following  Up-zero-crossing.  Similarly  a
second slope estimate, the maximal slope, is calculated
by the maximal difference in potentials between data-
point samples in between down-peak and up-peak and the
sample frequency giving the constant time lag between
data-point samples. NEW: Also the slope from the first
Down-zero-crossing to the down-state is now reported in
addition.
The amplitude (aka. maximum trough to peak potential) of
the  slow  oscillation  is  the  absolute  difference  in
potential  between  up-peak  and  down-peak  (up-peak
potential  minus  down-peak  potential).
The  average  frequency  of  a  slow  oscillation  is
determined by the length of the slow oscillation, i.e.
1/ (length of slow oscillation). A second approximation
is not by the length of the slow oscillatoin, but by the
down-to-up-peak time lag.
Samples and/or time-points of the begins, ends, down-
peak, up-peak, slope, max slope, are also reported.
Also the standard deviation within the filtered signal
of the spindle is given to exclude further outliers
after detection is finished.

Before further filtering putative slow oscillations can then



be further excluded if they do not concur with a maximum up-
peak or down-peak potential, given in absolute values of the
potential (e.g. 800 µV).

Afterwards putative slow oscillations are further selected if
their down-peak potential was lower than a factor (e.g. 1.25)
times the mean down-peak potential and whose amplitude is
larger than another factor (e.g. also 1.25) times the mean
amplitude of all other putative detected slow oscillations
within this channel. To also detect smaller slow oscillations
the factors can be chosen smaller (e.g. 1.0 or 0.75 fo mean
putative slow oscillation values). See Figure 7.

The final slow oscillations are ordered in time of occurrence,
also given a specific identification index within each channel
reflecting the temporal ordering.

Report of slow oscillations events includes each event and its
properties (event file), and an aggregation by channels of
interest with key mean or summary values (channel file). Files
for each individual dataset are then merged to a single file
containing all entries of all analyzed datasets.



Figure 7: Example of a slow oscillation in the filtered signal
(0.3 to 4 Hz) and its detection due to Down-zero-crossings
(i.e.  positive  to  negative  potential  change  in  filtered
signal) and thresholds. Slow oscillations are defined between
two Down-zero-crossings with delay matching slow oscillation
frequencies (e.g. 0.5-1.25 Hz) and thresholds that mark the
maximal  negative  down  potential  and  the  minimal  necessary
amplitude. Thresholds can be obtained by multiples (e.g. 1.25)
of  the  mean  over  all  candidates  slow  oscillations  (of  a
channel) with Down-zero-crossings having delay matching slow
oscillation  frequencies.  Slope  and  frequency  of  a  slow
oscillation is can be obtained by two methods each. The top of
the  figure  depicts  the  probability  of  co-occurring
events/activitry like fast and slow spindles on frontal and
parietal cortex and hippocampal ripple activity (darker colors
mean higher occurrence relative to lower (whiter) periods).
Note there is less such activity during the down-state (as
opposed to the preceding or following up-state) of the slow
oscillation.



Non-events
Non-events  are  detected  according  to  event  time-points  in
respective  matching  sleep  stages  of  interest.  Matching  is
according to specified sleep stage resolution. For example
NonREM has three further resolutions: (S2 + SWS) or (S2 + S3 +
S4). If one gives SWS + S2 instead of NonREM, then an event in
S2 is matched by a non-event in S2 and an event in SWS is
matched by a non-event in SWS.

Given the time-points of events and a column that gives the
respective channels of the events, they are further defined by
a pre- and post-events time buffers, i.e. how long ago the
event started previous to the given time-point (pre-event time
buffer) and how long after the event it ends (post-event time
buffer). For example if an event occurs at 203.5 s and the
pre-event buffer is 1 s and the post event buffer is 1.5 s,
then the event begins at 202.5 and ends at 205.0 s. Therefore
these buffers define the left and right boundaries of the
actual event and also the “to-be-found” non-events.

Further,  two  event-to-non-event-boundary  time  buffers  are
given, one to the left and one to the right. They further
define  the  minimal  distance  difference  of  the  boundaries
(begins and ends) of new non-events to all the other events.

These  four  buffers  and  the  to-be-matched  sleep  stage  of
interest are limiting the search space for non-events within a
channel.



Figure 8: Non-event detection by searching for every event
(blue)  a  corresponding  non-event.  Non-events  are  searched
randomly in a time window with normally distributed distance
from  the  corresponding  event.  Only  non-events  that  match
specified (buffered) distances form the event and other events
are accepted. Those distances are defined by specific time
buffers around events to non-events’ boundaries, i.e., a and
minimal  distance  from  events  and  non-events.  Also,  search
spaces that are not of the same sleep stage can be forbidden
(not shown here).

The search space can further be limited to consider events
given in all other channels of interest.

Within those limits a non-event matching previous criteria is
searched randomized following a normal distribution that is
defined by a given standard deviation in seconds. A new non-
event is not allowed to overlap with any already found non-
events in the same channel. Note that two event boundaries of
other  events  and  all  non-event-boundaries  can  also  not
overlap. If no matching non-event can be found in a given
number  of  random  tries,  then  the  standard  deviation  is
increased by a step size. Those increases are performed every
such number of random tries until it reaches the given maximum
of tries per event to find any non-event. In case of maximum
number of tries (i.e. a rare case) the last guess of non-event
is taken, that does not overlap with any event if it can take
the time space of an already found non-event, therefore in



this case the non-events can overlap. Note that this cannot be
avoided if events are to densely packed for a sufficiently
large search space for every event. In the case that non-
events are too densely packed and do not allow for any non-
event to be found in the search space (not considering other
found non-events) until the maximum number of tires and any
further try,  then non-events may overlap with events. To
avoid sequence effects of filling the gaps in the allowed
search space of possible non-events, the event time-points are
processed in random order. However output is in the same order
as the events given for input. Randomization is seeded, i.e. a
seed (a positive natural number) is given, and allows the same
random events and output given the same input when by using
the same seed (changeing the seed changes the output though
the  input  is  the  same).  The  output  then  contains  an
indexed,corresponding  non-event  for  each  given  event.

 

Event co-occurrence
A list of test events (Tests or Seeds), i.e. time-points, are
tested  to  fall  within  a  list  of  further  specified  target
events. Target events are time-points with an offset and a
pre- and post- time window before this offset (Targets). Time
windows can be defined by constant values or alternatively by
two columns in the target dataset with two respective constant
time offsets. See Figure 9.

Tests and Targets are listed in separate tables with their
corresponding time-points and further columns on witch Test
and Target can be further matched, i.e. if they should be
compared. The columns used for comparison of Tests and Targets
should match in content and number of columns. Test events are
called Matches if they match a target and Mismatches if they
do not.

Results are reported per Test, i.e. for each Test each matched



Target is given in a line with the complete table content of
the test and target events and further annotation. Note that
one test can match several targets in some cases, and that
this results in more than one entry of the same Test (or entry
of the same Target). Results are split in separate files for
Matches and Mismatches. Furthermore a summary file listing the
matches and mismatches grouped by specified columns in the
table of test events. Output is grouped in order of Test
events in respective input table. Note that switching the
Targets for the Tests can result in the same results, however
differently grouped or ordered.  Also not that if Tests and
Targets are from the same table this can be used to assess
temporal overlap of events in a specific range (this would be
the  non-identical  matches).  Finally  this  can  be  used  to
compare two different results of detections (e.g. having used
detections with different paramters).

Matches can be filtered for identical and duplicate matches,
e.g. if matching the same events against themselves (for a
delay/traveling analysis), then pairs of matches (Test-Target
 or Target-Test will only occur once if already contained and
Tests will move to the Mismatches if they would match twice in
that matter. Same events this can also just be excluded to
match  itself  according  to  identity  markers  (i.e.  the
combination of data columns to describe a unique event).



 

Figure 9: Two methods for matching event co-occurrence. Test
events are matched against Target events defined by either one
time-point and offset with pre- and post-offest time buffers
(Method 1), or two time-points marking the begin and end of
the target events with two respective offsets (Method 2). This
defines time windows for Test events to fall within range of
Target events, i.e., within a test time window. Matching Test
events  temporally  fall  (at  least)  within  one  of  the  test
windows, mismatching Test events temporally fall within no
test time window.

 

…A  full  Tutorial  will  be



online sooner or later.
… for now I have given skype tutorials and workshops on how to
use SpiSOP, you can contact spisop@spisop.org and ask for
that,  I  am  happy  to  help.  Soon  I  will  also  publish  a
tutorial video, and give here good descriptions of the first
steps, and a full tutorial, or how to deal with example data
in detail, if you are unpatient, really just ask.

For now, find the quick-start guide for the standalone version
and “experienced” useres already.

References
Heinzel,  G.,  Rüdiger,  A.,  Schilling,  R.,  &  Hannover,  T.
(2002).  Spectrum  and  spectral  density  estimation  by  the
Discrete Fourier transform (DFT), including a comprehensive
list of window functions and some new flat-top windows. Max
Plank Institute, 12, 122.

Mölle, M., Marshall, L., Gais, S., & Born, J. (2002). Grouping
of spindle activity during slow oscillations in human non-
rapid eye movement sleep. The Journal of neuroscience, 22(24),
10941-10947.

Ngo, H. V., Martinetz, T., Born, J., & Mölle, M. (2013).
Auditory closed-loop stimulation of the sleep slow oscillation
enhances memory. Neuron, 78(3), 545.

Rechtschaffen,  A.,  &  Kales,  A.  (1968).  A  manual  of
standardized terminology, techniques and scoring system for
sleep stages of human subjects.

mailto:spisop@spisop.org
https://www.spisop.org/quickstart

